Homework 18

Nicholas Amoscato
naa46@pitt.edu

Josh Frey
jtf15@pitt.edu

October 11, 2013
CS 1510 Algorithm Design

1. Dynamic Programming Problem 24:

The objective of this problem is to develop an algorithm that determines if one can
partition a collection of n boxes By, ..., B, into two disjoint sub-collections 57 and S5
of equal weight where the weight of each box xj, is an integer from 1 to some constant
L inclusive. Let |S;| and |S2 be the cumulative weight of S; and Ss respectively.

We derive a dynamic programming algorithm by constructing a binary tree that
enumerates all possible sub-collections S7. For the purpose of this construction, we
assume that all boxes exist in Sy at the root of the tree; thus S; is empty. The tree is
constructed level-by-level, iterating through the boxes Bi, ..., B, sequentially. Each
node at level k of the tree has two children: the left child adds Byyi to S1 and
removes it from Sy while the right child does not add Bj41 to Sp (and it stays in S).

In its current form, the tree will have an exponential number of leaf nodes; thus, we
introduce pruning rules as follows.

(a) First, it is important to note that as we construct the tree, |Si| will never
decrease from level k to level k + 1. This comes from the fact that we are either
(1) adding a box to Sj or (2) not adding a box to S;. Thus, |Si| will either
increase or stay the same.

With this said, if |S1| ever exceeds |S2| in a given node, the sub-collections
enumerated in the node’s subtrees will never be of equal weight. Therefore, we
prune this node.

(b) If there are two nodes at the same level k in which the weights of S} are equiv-
alent, arbitrarily prune one node. This comes from the fact that all remaining

boxes Byy1,..., By considered after level k£ will enumerate idential solutions.

With these pruning rules, we ensure that there are no more than ”;L nodes on each

of the n levels of the tree. That is, if all n boxes had the maximum weight of L, the
cummulative sum of all of these boxes would be n x L. However, by our first pruning
rule, |S1| will never exceed “%%. The second pruning rule ensures that there is at

most one node for each unique cummulative sum 1,..., %

Let Mk, w] be the sub-collection that contains at most k of the first & boxes with a
cummulative sum of w. We assume each entry of M is initially undefined. (Note that
if we only need to decide whether or not a solution is feasible, |S2| could be stored
in each table entry as opposed to the entire sub-collection.)

The dynamic programming algorithm is described in pseudocode below:

|So| =D 0 @i > initialize weight of Sy
M1, 2] = By > there must be at least one box in S
for k=1 ton do > for each level and box By,
|Sa| = |S2| — xk > update the weight of So
for w=1to % do > for each possible cummulative weight
if Mk, w] is defined then > if there is a sub-collection
if w+ xp <|S2| then > first pruning rule
Mk +1,w + x| = M[k, w] + By > move By, from Sy to S;
end if
Mk +1,w] = Mk, w] > keep By, in Sy
end if
end for
end for

Clearly the algorithm runs in O(n?L) time.

If a solution to this problem exists, it will be in the last level of the matrix Mn,w].

for w =1 to % do > for each possible weight of Sy
solution exists with S1 = M|[n, w]
end if
end for

solution does not exist

. Reduction Problem 1:

Theorem: If there is an O(n?) algorithm for multiplying two n by n lower triangle
matrices then there is an O(n?) time algorithm for multiplying two arbitrary n by n
matrices.

Proof: Let MM be the problem of multiplying two arbitrary n by n matrices. Let
LTMM be the problem of multiplying two n x n lower triangle matrices. In order
to prove the theorem we must show that MM < LTM M. If we prove this reduction
is true, we will prove that there is an algorithm to solve MM that lacks only code
for LTMM.

Thus, we define an O(n?) algorithm for M M where n x n input matrices A and B are
transformed to 3n x 3n lower triangle matrices C' and D which will be used as input
to LTM M. Note that the placement of A and B in C' and D ensure that A x B will
be in the bottom left of the resultling matrix.

problem MM(A, B)

0 0O
C=10 0 0 > create LTM from A in O(n?)
0 A0
[0 0 0
D=|B 0 0 > create LTM from B in O(n?)
10 0 0
P=LTMM(C,D) > compute LTMM of C x D in O(n?)
fori=1tondo > for each row
for j =1ton do > for each column
Q[i, 7] = P[2n + 1, j] > store bottom left of P in O(n?)
end for
end for
return @

As we can see, based on the transformation of input and transformation of outputs
being from arbitrary matrecies to lower triangle matrecies being O(n?) , if we are able
to solve lower triangle matrix multiplication in O(n?) time, then matrix multiplication
can be solved in O(n?) times.

. Reduction Problem 4:

Theorem: If you can solve the minimum Steiner tree problem in linear time, then
you can sort n numbers in linear time.

Proof: Let Sort be the algorithm for sorting n numbers 1, ..., x, by calling M ST,
which is the minimum Steiner tree problem. We show that Sort < M ST by tran-
forming our inputs and outputs as follows.

Let the n numbers used as input to Sort be transformed into n points on the Cartesian
plane where each point has an x-value of 0 and a y-value of x;.

Assuming M ST returns n adjacency lists for each of the n points, we start at the
adjacency list for the point a with the smallest y coordinate. This point is obviously

the lowest point on the Cartesian plane, and it will only be connected to one point b,
the point directly above it (which has a greater y-value). Point b will be connected
to two points: obviously point a and a second point ¢ that is directly above b.

Thus, traversing the adjacency lists from the point with the smallest y coordinate
will output the points in order of increasing y coordinate.

problem Sort(z1,..., %)
for i=1tondo
v;=(0, x;) > transform numbers to points in O(n)
end for
T =MST(v1,...,vp) > find minimum Steiner tree in O(n)
(a,b) = adjacency list in 7" where point a has smallest y coordinate > O(n)
T1 = ay > x1 = y coordinate of point a
for i =2 ton do > O(n)
x; = by > x; = y coordinate of point b above a
(a,b) =(b,c) €T |c#a > find point ¢ above b
end for
return z1,...,x,

Clearly the above algorithm shows that Sort < M ST in linear time.

