
Homework 18

Nicholas Amoscato
naa46@pitt.edu

Josh Frey
jtf15@pitt.edu

October 11, 2013
CS 1510 Algorithm Design

1. Dynamic Programming Problem 24:

The objective of this problem is to develop an algorithm that determines if one can
partition a collection of n boxes B1, . . . , Bn into two disjoint sub-collections S1 and S2

of equal weight where the weight of each box xk is an integer from 1 to some constant
L inclusive. Let |S1| and |S2 be the cumulative weight of S1 and S2 respectively.

We derive a dynamic programming algorithm by constructing a binary tree that
enumerates all possible sub-collections S1. For the purpose of this construction, we
assume that all boxes exist in S2 at the root of the tree; thus S1 is empty. The tree is
constructed level-by-level, iterating through the boxes B1, . . . , Bn sequentially. Each
node at level k of the tree has two children: the left child adds Bk+1 to S1 and
removes it from S2 while the right child does not add Bk+1 to S1 (and it stays in S2).

In its current form, the tree will have an exponential number of leaf nodes; thus, we
introduce pruning rules as follows.

(a) First, it is important to note that as we construct the tree, |S1| will never
decrease from level k to level k + 1. This comes from the fact that we are either
(1) adding a box to S1 or (2) not adding a box to S1. Thus, |S1| will either
increase or stay the same.

With this said, if |S1| ever exceeds |S2| in a given node, the sub-collections
enumerated in the node’s subtrees will never be of equal weight. Therefore, we
prune this node.

(b) If there are two nodes at the same level k in which the weights of S1 are equiv-
alent, arbitrarily prune one node. This comes from the fact that all remaining

1

boxes Bk+1, . . . , Bn considered after level k will enumerate idential solutions.

With these pruning rules, we ensure that there are no more than n×L
2 nodes on each

of the n levels of the tree. That is, if all n boxes had the maximum weight of L, the
cummulative sum of all of these boxes would be n×L. However, by our first pruning
rule, |S1| will never exceed n×L

2 . The second pruning rule ensures that there is at
most one node for each unique cummulative sum 1, . . . , n×L2 .

Let M [k,w] be the sub-collection that contains at most k of the first k boxes with a
cummulative sum of w. We assume each entry of M is initially undefined. (Note that
if we only need to decide whether or not a solution is feasible, |S2| could be stored
in each table entry as opposed to the entire sub-collection.)

The dynamic programming algorithm is described in pseudocode below:

|S2| =
∑n

i=1 xi . initialize weight of S2

M [1, x1] = B1 . there must be at least one box in S1

for k = 1 to n do . for each level and box Bk

|S2| = |S2| − xk . update the weight of S2

for w = 1 to n×L
2 do . for each possible cummulative weight

if M [k,w] is defined then . if there is a sub-collection
if w + xk ≤ |S2| then . first pruning rule

M [k + 1, w + xk] = M [k,w] + Bk . move Bk from S2 to S1

end if
M [k + 1, w] = M [k,w] . keep Bk in S2

end if
end for

end for

Clearly the algorithm runs in O(n2L) time.

If a solution to this problem exists, it will be in the last level of the matrix M [n,w].

for w = 1 to n×L
2 do . for each possible weight of S1

if w ==
∑

Bi 6∈M [n,w] xi then . if |S1| == |S2|
solution exists with S1 = M [n,w]

end if
end for
solution does not exist

2. Reduction Problem 1:

Theorem: If there is an O(n2) algorithm for multiplying two n by n lower triangle
matrices then there is an O(n2) time algorithm for multiplying two arbitrary n by n
matrices.

2

Proof: Let MM be the problem of multiplying two arbitrary n by n matrices. Let
LTMM be the problem of multiplying two n × n lower triangle matrices. In order
to prove the theorem we must show that MM ≤ LTMM . If we prove this reduction
is true, we will prove that there is an algorithm to solve MM that lacks only code
for LTMM .

Thus, we define an O(n2) algorithm for MM where n×n input matrices A and B are
transformed to 3n× 3n lower triangle matrices C and D which will be used as input
to LTMM . Note that the placement of A and B in C and D ensure that A×B will
be in the bottom left of the resultling matrix.

problem MM(A,B)

C =

0 0 0
0 0 0
0 A 0

 . create LTM from A in O(n2)

D =

 0 0 0
B 0 0
0 0 0

 . create LTM from B in O(n2)

P = LTMM(C,D) . compute LTMM of C ×D in O(n2)
for i = 1 to n do . for each row

for j = 1 to n do . for each column
Q[i, j] = P [2n + i, j] . store bottom left of P in O(n2)

end for
end for
return Q

As we can see, based on the transformation of input and transformation of outputs
being from arbitrary matrecies to lower triangle matrecies being O(n2) , if we are able
to solve lower triangle matrix multiplication in O(n2) time, then matrix multiplication
can be solved in O(n2) times.

3. Reduction Problem 4:

Theorem: If you can solve the minimum Steiner tree problem in linear time, then
you can sort n numbers in linear time.

Proof: Let Sort be the algorithm for sorting n numbers x1, . . . , xn by calling MST ,
which is the minimum Steiner tree problem. We show that Sort ≤ MST by tran-
forming our inputs and outputs as follows.

Let the n numbers used as input to Sort be transformed into n points on the Cartesian
plane where each point has an x-value of 0 and a y-value of xi.

Assuming MST returns n adjacency lists for each of the n points, we start at the
adjacency list for the point a with the smallest y coordinate. This point is obviously

3

the lowest point on the Cartesian plane, and it will only be connected to one point b,
the point directly above it (which has a greater y-value). Point b will be connected
to two points: obviously point a and a second point c that is directly above b.

Thus, traversing the adjacency lists from the point with the smallest y coordinate
will output the points in order of increasing y coordinate.

problem Sort(x1, . . . , xn)
for i = 1 to n do

vi=(0, xi) . transform numbers to points in O(n)
end for
T = MST (v1, . . . , vn) . find minimum Steiner tree in O(n)
(a, b) = adjacency list in T where point a has smallest y coordinate . O(n)
x1 = ay . x1 = y coordinate of point a
for i = 2 to n do . O(n)

xi = by . xi = y coordinate of point b above a
(a, b) = (b, c) ∈ T | c 6= a . find point c above b

end for
return x1, . . . , xn

Clearly the above algorithm shows that Sort ≤MST in linear time.

4

