
Homework 34

Nicholas Amoscato
naa46@pitt.edu

Josh Frey
jtf15@pitt.edu

November 22, 2013
CS 1510 Algorithm Design

1. Parallel Problem 17:

First, we recall the MIN problem presented in class that outputs the smallest xi from
a list of integers x1, . . . , xn. We can easily change this algorithm to find the maximum
xi by simply writing 1 when xi ≥ xj and 0 otherwise (as opposed to writing 1 when
xi ≤ xj). This algorithm runs in constant time with n2 processors.

We realize that as long as we have at least n2 processors, where n is the number of
integers we are trying to MAX, this problem can be solved in constant time. This
follows from the algorithm in which an n× n table is constructed.

Applying this realization to this problem, we claim that we can find the MAX of
n1/2 numbers in constant time with n1/2×n1/2 = n processors. Therefore, we divide
our input of n integers into n1/2 segments of size n1/2. Assuming that we can find
the maximum of each n1/2 segment in T (n1/2, n1/2), we know that we can find the
maximum of these resulting n1/2 integers in constant time. Thus, our recurrence
relation is defined as follows:

T (n, n) ≤ T (n1/21 , n1/21) + 1 (1)

T (n1/21 , n1/21) ≤ T (n1/22 , n1/22) + 1 (2)

· · · (3)

T (n1/2d−1
, n1/2d−1

) ≤ T (n1/2d , n1/2d) + 1 (4)

Given that we can find the maximum of two integers in constant time, this process
continues until there are two integers left to compare. That is,

n1/2d = 2 (5)

1



where d is the number of steps of the recurrence relation illustrated above. Solving
for d, we get

log
(
n1/2d

)
= log 2 (6)

1

2d
log n = 1 (7)

log n = 2d (8)

log logn = d (9)

Thus, the recurrence relation will terminate in log log n steps. Given that finding the
maximum of these recursive results happens in constant time, this algorithm runs in
time O(log log n).

2. Parallel Problem 18:

We obtain a parallel algorithm that finds the maximum number in a sequence x1, . . . , xn
of integers in the range [1, n] in constant time on a CRCW-Priority PRAM with n
processors p1, . . . , pn where p1 is the processor with the lowest identifier (and highest
priority). We assume that the integers are stored in an array X of size n.

Knowing that the integers in X fall within the range [1, n], we create a temporary
array T of size n that will keep track of whether or not an integer exists in X.
Specifically, if the integer x does exist, T [x] = 1; otherwise T [x] = 0. We initialize T
by assigning each processor an arbitrary index in T and have them write a 0 to their
respective index.

Next, we assign each processor pi to an array location X[n− i+ 1]. That is, the first
processor p1 is assigned X[n − 1 + 1] = X[n], the second processor p2 is assigned
X[n − 2 + 1] = X[n − 1] and so on. The assignment of all of the processors can
happen in constant time.

Then we have each processor pi write a 1 to T [X[i]]. As described above, this des-
ignates that the integer X[i] does exist in X. This step can also happen in constant
time.

Finally, for each processor pi, if T [i] = 1 (in other words, if there is an integer i ∈ X),
we output i. By the nature of assigning the highest priority processor to the highest
index of X, we ensure that only the highest index i where T [i] = 1 will be output.

3. Parallel Problem 19:

We obtain a parallel algorithm that finds the maximum number in a sequence x1, . . . , xn
of integers in the range [1, n] in constant time on a CRCW-Common PRAM with n
processors p1, . . . , pn by following a similar approach as in problem 18. That is, we
create a temporary array T of size n that is initialized to 0. Again, assuming that

2



the integers are stored in an array X of size n, we assign each processor pi to an
arbitrary index of X and have them write a 1 to T [X[i]].

As before, we must output the highest index i in which T [i] = 1. However, we can
not simply rely on the priority PRAM as in problem 18. Instead, we describe an
alternative way to find the maximum index on a CRCW-Common PRAM.

We recall a realization that we made in problem 17. That is, we can find the maximum
of n numbers in constant time with n2 processors. However, given that we only have
n processors, we can only find the maximum of at most n1/2 numbers in constant
time. Thus, it seems that we must break this problem into n1/2 subproblems.

We segment T into n1/2 chunks of n1/2 numbers. We realize that if none of the values
T [i× n1/2], . . . , T [(i + 1)× n1/2 − 1] in a given chunk cj are 1 (if they are all 0), the
maximum index is definitely not in cj . We can “summarize” cj with a 0. Otherwise,
the maximum index might be in this chunk, and we set cj = 1.

This is in fact an informal definition of binary OR. Given that we have n1/2 different
chunks, we create an array C = [c1, . . . , cn1/2 ] of size n1/2 that will store the results
of these ORs. Specifically, c1 will coorespond to the first n1/2 numbers of X, c2 will
coorespond to the second n1/2 numbers of X, and so on. We assign n1/2 processors
to each chunk and compute the OR of n1/2 numbers in constant time using the
algorithm that was presented in class. Each processor pj writes the result of its OR
to its respective index C[j].

When this step has finished, C will contain n1/2 ones or zeroes that effectively sum-
marize the n1/2 chunks of X. We can now find the maximum index of C in which
cj = 1 in constant time with n processors using the MAX algorithm described in
problem 17. The resulting index j will tell us which segment the maximum number
resides.

Knowing that there are n1/2 numbers in each segment, we can run this MAX algo-
rithm once more on T [j × n1/2], . . . , T [(j + 1)× n1/2− 1] to determine the maximum
index in constant time.

3


